Understanding Technology Enablers for Building Efficiency 2.0

Alex Herceg, P. Eng.

Prepared for

2016 IERE – CLP-RI Hong Kong Workshop

November 22, 2016

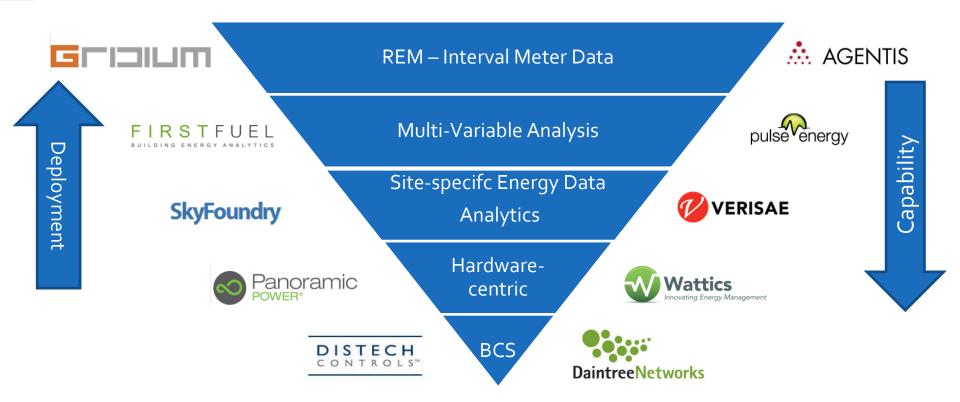
Agenda

- > Identifying forces and opportunities for growth
- > The new normal: Building Efficiency 2.0
 - > Opportunities in the smart city
 - > Business model innovation
- Discussion

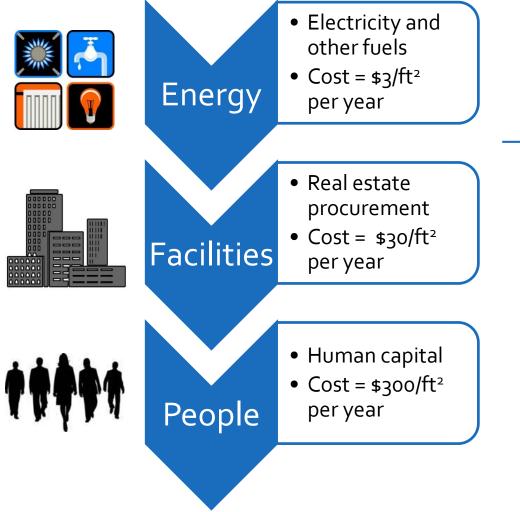
About Lux Research

uxresearch

- > Helps clients find new business opportunities from emerging technologies in physical and life sciences
- Offers ongoing technology and market intelligence, as well as market data and consulting services
- Over 250 clients on six continents multinational corporations, investors, governments, and SMEs
- Global reach, with offices in Boston, New York, Amsterdam, Singapore, and Tokyo
- Combines deep technical expertise with business analysis to support strategic decisions

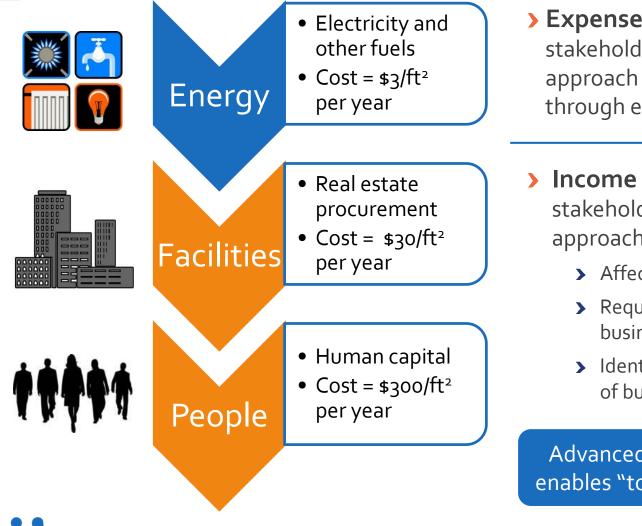

More at www.luxresearchinc.com

Coverage areas Advanced Materials Agro Innovation Alternative Fuels **Bio-based Materials & Chemicals** Coatings **Digital Health & Wellness Distributed Generation Electronic User Interfaces Energy Storage Exploration and Production** Food and Nutrition **Future Platforms** Industrial Big Data & Analytics Industrial Internet of Things Intelligent Buildings Sustainable Building Materials Water Wearable Electronics


Energy efficiency is an expectation, not a disruption

> BEMS has expanded in capability beyond the walls of the building, and now ranges from low-touch rapid energy modelling to wireless control of sub-systems

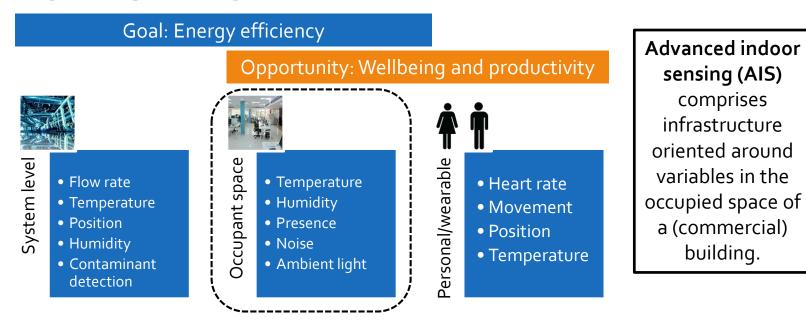
Pricing is less than \$0.01/ft² for low-touch tools and under \$0.49/ft² if hardware is
needed
Juxresearch


Energy is only part of the equation, and forwardlooking companies are targeting the 3-30-300

xresearch

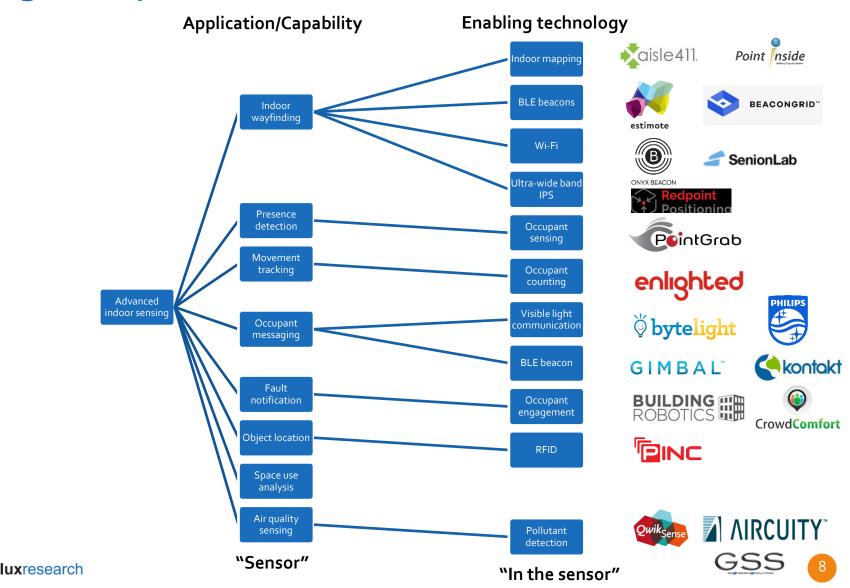
- > Expense oriented: to which stakeholders take a reactive approach to reduce energy through efficiency upgrades
- Income oriented: to which stakeholders take a proactive approach to increase gains
 - > Affects top-line revenue
 - Requires firm understanding of business operations
 - Identification and optimization of business processes

Energy is only part of the equation, and forwardlooking companies are targeting the 3-30-300

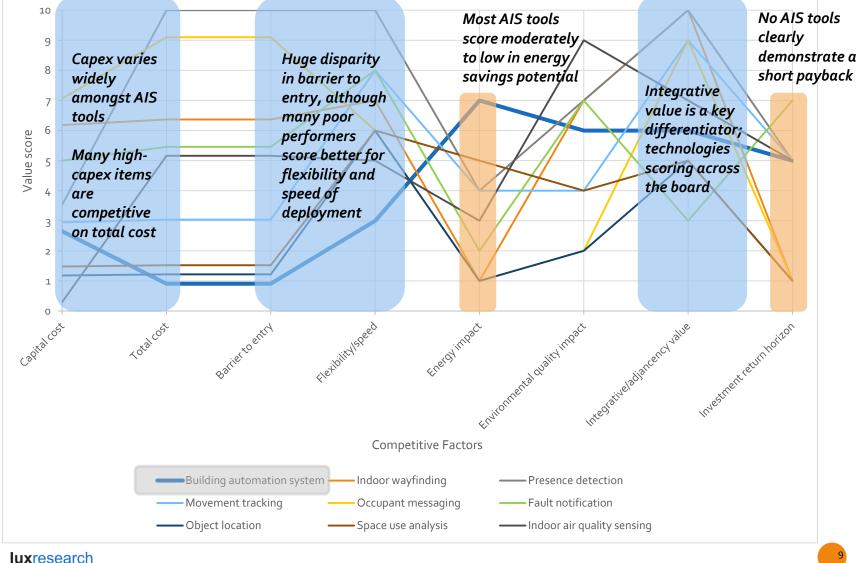

ixresearch

> Expense oriented: to which stakeholders take a reactive approach to reduce energy through efficiency upgrades

- > Income oriented: to which stakeholders take a proactive approach to increase gains
 - > Affects top-line revenue
 - Requires firm understanding of business operations
 - Identification and optimization of business processes


Advanced indoor sensing ("AIS") enables "top-line" adding activities

Indoor sensing today is focused on the system level targeting energy use



- > Buildings are relatively poorly instrumented, particularly in interior spaces
 - > Small buildings are most often neglected, often equipped with only temperature sensing
- > Granularity is lacking, as most sensors have been placed at the system level in order to target energy use, rather than a personal level
- > There is very limited proliferation of "personal" sensors in commercial buildings, beyond common RFID access control tags

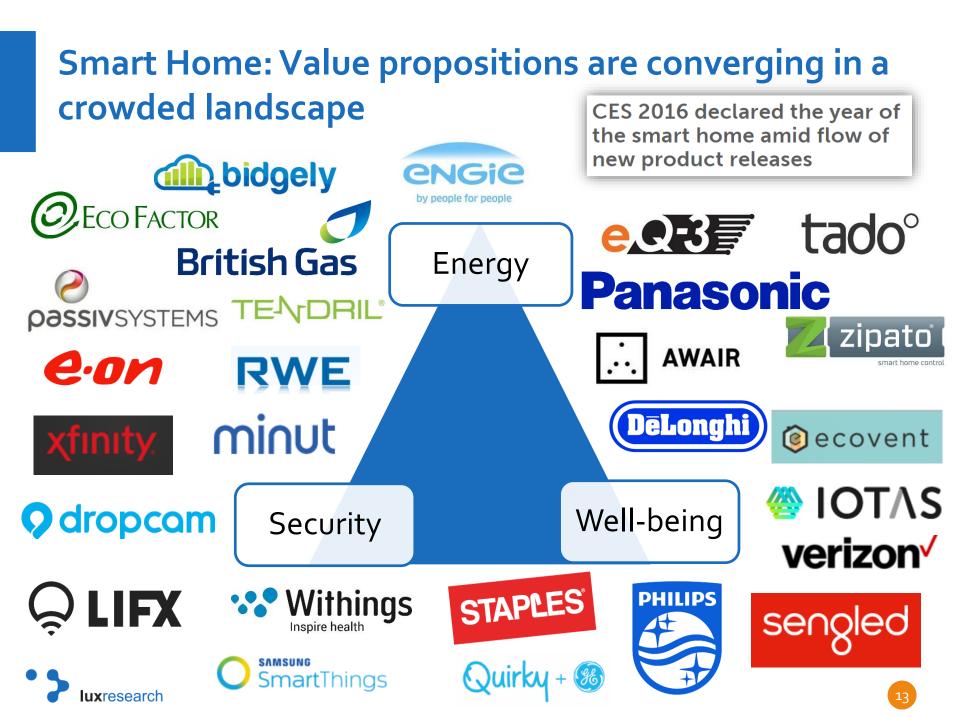
Startups are active in almost all aspects of AIS, while large companies are almost absent

Blue Ocean strategy canvas reveals areas offering differentiation among AIS capabilities

AIS drives top-line value, but impact is not uniform across building types

- > Advanced indoor sensing is not about decreasing costs, it is about increasing operational value. It is a "top-line" opportunity vs. a "bottom-line" problem.
- > Each technology outlined in the AIS toolkit varies in granularity from tens of centimeters to tens of meters.
- > Retail is by far the most active segment in experimenting with AIS, and is interesting for these reasons:
 - > Brick and mortar stores have not been subject to the same scrutiny as online operations; online retailers are moving back to physical stores for further customer engagement opportunities and deeper analysis at the "point of inspiration."
 - > Retailers are often in a highly competitive environment and thus willing to experiment.
 - > AIS solutions, such as those by Aisle411 and Point Inside, offer operational benefits not only to customers but also to retail staff, allowing retailers to double-down on their infrastructure investment.
- > Commercial offices have received some attention, but largely around operational and maintenance efficiencies, such as restroom cleaning, recycling monitoring, and space utilization (see Yanzi Networks).
- Few have yet targeted productivity, such as Qwiksense luxresearch

Mapping technologies onto sectors with the most potential for value

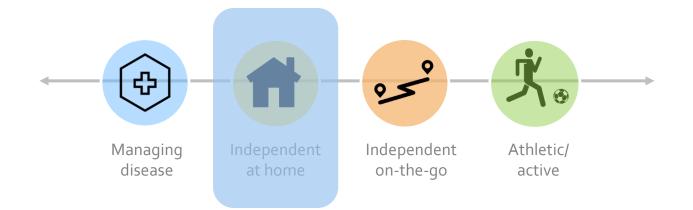

- Using a heat map, we can evaluate the disruptive potential of AIS technologies on particular segments (see Figure).
- Warehouses and storage present an opportunity as asset tracking further evolves and can be integrated with building infrastructure
- > Hotels present an opportunity for AIS entry:
 - The segment's high energy use (approximately double that of office buildings) allows AIS tech with energy savings potential to present a strong case.
 - Guest comfort is a key competitive advantage; companies like <u>Entic</u> have demonstrated success in this segment by translating comfort into increased bookings.
- > Health care leads in potential, with a particular interest in technologies that enable indoor asset and people tracking.

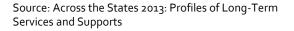
uxresearch

		Building segment					
	Commerical office	Retail & mall	Education	Warehouse & storage	L odging	Healthcare	Food service
Indoor wayfinding				· · · · · ·			
Indoor mapping and location		5				5	
BLE beacons							
WiFi							
WiFi + BLE							
Ultrawideband IPS		5		5			
Presence detection							
Occupant counting		5					
Occupant engagement		5					
Movement tracking							
Occupant counting		5					
Occupant messaging							
VLC		5				5	
BLE beacon							
Fault notification							
Occupant engagement app							
Object location							
RFID						4	
RFID (UHF)							
<u>Space use analysis</u>							
Occupancy sensing		5				5	
Workstation sensors	5						
<u>Air quality sensing</u>							
Pollutant sensing						5	
	1	2	3	4	_		
	not use	_	ہ Increm		disrupti	Ve	-1

AIS will succeed in the same way as the smartphone: Open up robust sensor capabilities and scale

- > The blue ocean canvas shows that most variation is in costs and barrier to entry; therefore, companies should work toward solving a winning platform using a two-pronged approach:
 - > Create volume. Economy of scale helps reduce sensor costs.
 - > Exploit "sensor fusion." Leverage existing sensors for as many applications as possible, sharing total costs and lowering overall barriers for entry for new applications.
- > To do this successfully, such an offering must:
 - > Target *multiple applications* at once (i.e. not just energy, but also not just air quality); these should be segment-specific and address the most pressing pain-points
 - > Build a *versatile sensor platform* that other companies can also use (i.e. form partnerships across sensor capabilities and applications)
 - > Find business models and deployment methods to *lower the barrier* to installing sensors (e.g. integrate with lighting, or finance as part of an energy retrofit)
- > One case study of this is Enlighted:
 - > Has scaled to over 100 million ft², and has built its OccupancyONE platform and is now actively seeking partners to build applications to
 - leverage its data on presence, movement, and environmental sensing





The "over 6o" population is rapidly growing, but they have different needs

> There is no single type of seniors

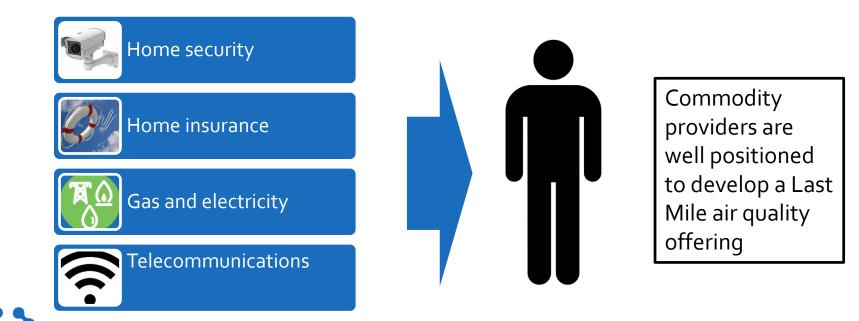
> The needs of the elderly population can be mapped on a spectrum:

There are several approaches to enable seniors to be independent while at home

- > Some technologies utilize physiological tracking. dorsaVi is an example of such a technology.
- > Environmental monitoring, which can arguably achieve "senior monitoring" in a less invasive way and can address social stigmas in adopting and using medical alert systems. Within environmental monitoring, approaches include *load disaggregation, smart plugs, wearables, and multi-function sensors*.
- > Questions for consideration include: how to identify times at which the senior is not well? How to seek the right type of help at the right time?

	Price		Data collection approach						Stage of
Company	(\$USD)	Load disaggregation	Smart plugs	Wearables	Multi- function sensor	Connectivity	Origin	development	
Intelesant	Howz	\$290	•			•	Hub + ethernet	U.K.	Development
Lively	Lively safety watch (+ hub)	\$50 + \$35/month			•	•	Hub + 3G	U.S.	Scale (acquired by GreatCall)
Silverline	твс	твс		•	•	•	твс	Singapore	Development
Sen.se	Mother	\$310 hub + \$30 sensor				•	Hub + Ethernet	France	Introduction
Notion	n/a	\$200 (three sensors)				•	Hub + WiFi/BLE	U.S.	Development
Minut	Point	\$120				•	WiFi	Sweden	Introduction
Limmex	Emergency watch	\$550-\$1,000 + \$20/month			•		GPS + GSM	Switzerland	Introduction

Adjacent opportunity in connected buildings: The "Last Mile" of air quality



Delivering the Last Mile depends upon a services component that connects air quality to results

- Consumers are demanding better houses; 65% believe they will live in an automated home in a decade¹
- > Key Gap: Few if any air quality services; consumers need help

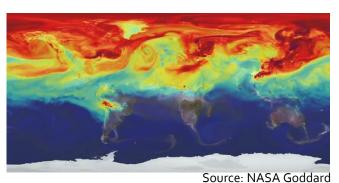
xresearch

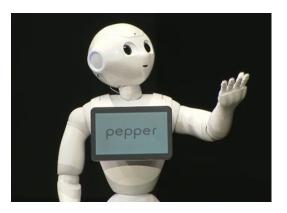
> Consumers in the U.S. spend an average of \$110/month on home utilities alone, and much more for additional services, such as \$130/month cable and internet access

Thank you

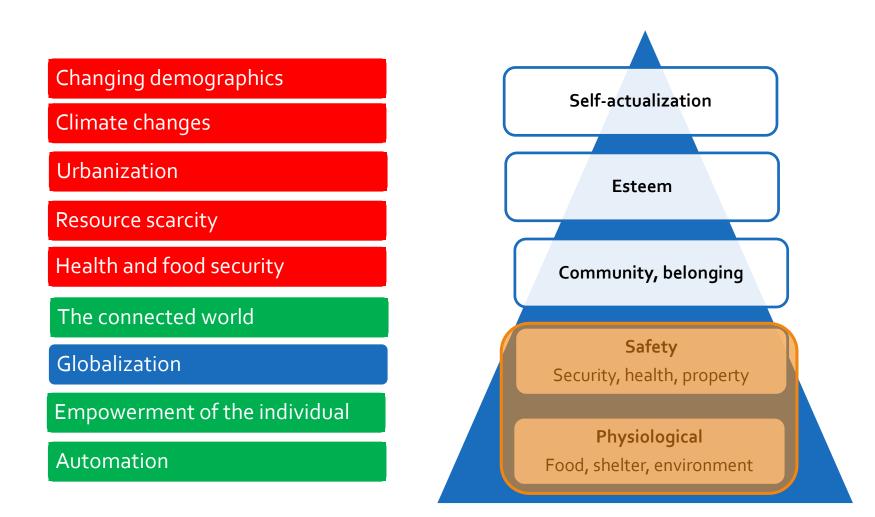
Alex Herceg, P. Eng. +31(0) 20808 7538 Alex.Herceg@Luxresearchinc.com @AlexHerceg

Lux Research Asia Pacific Pte. Ltd. www.luxresearchinc.com

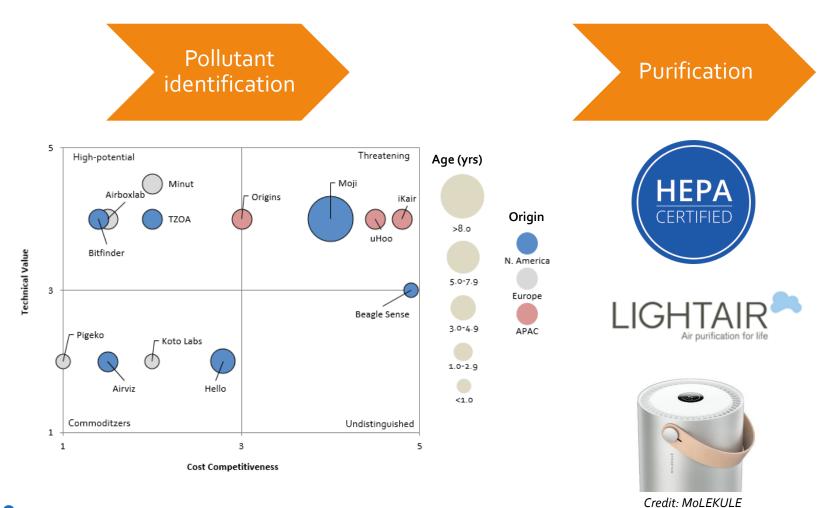

Appendix


Lux Research Asia Pacific Pte. Ltd. www.luxresearchinc.com

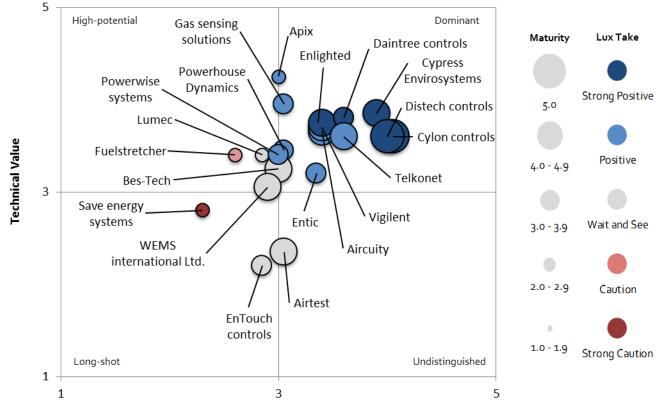
Mapping global megatrends point to resources, health, and connectivity



Source: FastCompany


Addressing the core "needs" is a moving target

• **}** Iuxresearch

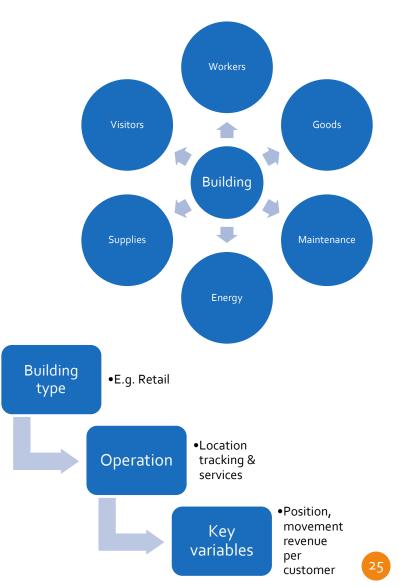

Three Key Needs: Energy, Security, Health

Each component of the "Last Mile" depends on technical partnerships

luxresearch

The HVAC sensors and controls landscape is mature and is dominated by strong incumbents

Business Execution



Deploying AIS is key to improving building and business operations

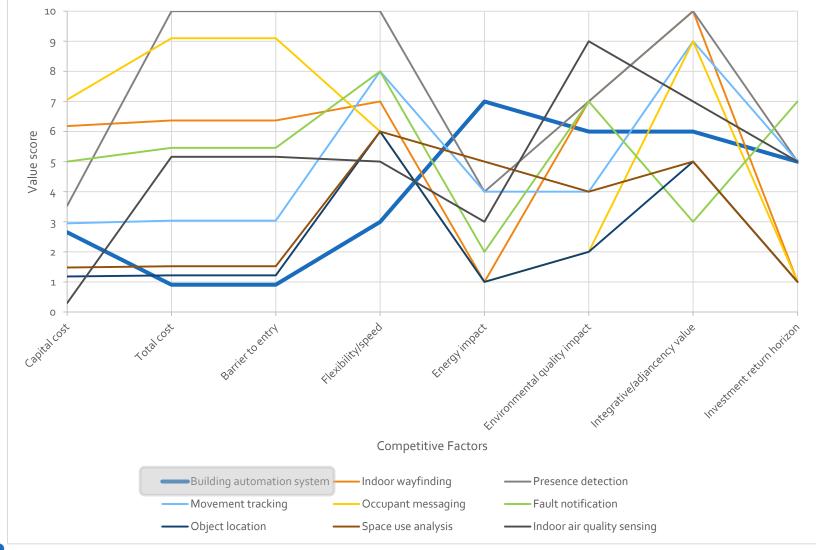
- Advanced indoor sensing provides data that gives facilities better understanding of *interactions.*
- > Buildings have many "actors," which can broadly be grouped into two categories:
 - > People visitors, workers, occupants
 - > Goods supplies, products, etc.
- Quantity and rate of interactions varies by building type
- For a given building type, it is imperative to understand these interactions, and which ones drive value and which incur cost:

luxresearch

 > Example: Nurses in a hospital environment spend one hour (on average) per day locating medical supplies and equipment
→ asset tracking and indoor location could be used to reduce this

There is no silver bullet among AIS technologies, but some clearly stand out

> Clear winners:


- > Presence detection and occupant messaging are not very costly and are easy to install.
- > They provide immediate and clear value in the building.
- > Promising upcoming sensor applications:
 - > Indoor air quality sensing has clear and immediate value, but the costs must come down and installation must be streamlined.
 - > Indoor wayfinding has clear value when integrated with functions like presence detection and object location; this opens up opportunities for integrators there.
 - > Building automation systems can be disrupted by simpler low-cost systems that are easier to install and operate.
- > The strugglers:
 - > Object location struggles with high costs and limited utility, but could present promise for segments (e.g. health care) where this is a key concern.
 - > Space use analysis depends upon extensive sensing infrastructure, which carries a high cost. Due to sparsity of offerings, pricing for such "apps" is not yet clear.

The blue ocean strategy canvas provides a framework to assess the AIS capabilities

- There are many technologies under the umbrella of AIS focused on extracting additional data from occupied building spaces.
- Some of the capabilities of AIS technologies are related to, or extensions of, conventional sensing technologies, such as those used for building automation.
- To evaluate the utility and disruptive potential of AIS applications, we have used a blue ocean strategy canvas, using several criteria related to cost, energy, deployment, and value enablement.
- For each AIS capability, we have conducted extensive primary and secondary research.

Category	Competitive factor
Cost	Capital cost
	Total cost
Energy	Energy savings potential
Deployment	Barrier to entry
	Speed/flexibility
Value	Integrative/adjacent value
	Environmental quality impact
	Investment time horizon

Blue ocean strategy canvas shows AIS capabilities diverge relative to conventional sensing

luxresearch

Stack Labs

Connected light bulbs with embedded occupancy and daylight sensors for residential and commercial buildings

> Technology and differentiators:

- LED lighting with integrated environmental and occupancy sensing, based on RF motion sensing
- Differentiates against other sensing networks by its advanced data processing and machine learning algorithms which enable multiple potential use cases; novel occupancy sensing using RF instead of widely used passive infrared

> Strategy and markets:

- > Last funding round was in November 2015 and planning to raise between \$12 and \$15 million in the near term (total amount is undisclosed)
- Targeting lighting control, security, elderly care, and analytics

> Recommendation:

Engage with Stack for potential partnerships, use case development, or technology licensing; Stack's technology can enable multiple use cases in both residential and commercial applications that go beyond lighting control but leverage the existing lighting infrastructure

Lux Take: **Positive**

Summary information				
Founded in	2013			
Location	Cupertino, USA			
Revenue	\$75,000 (est.)			
Key partners and backers	Lunera, undisclosed investors			
Key metrics				
Unit cost	\$35-45/LED bulb			
License fee	\$0.02-0.03/ft²			

Image credit: CBS Interactive

PointGrab

Occupant monitoring in commercial buildings using edgeanalytics sensing technology

> Technology and differentiators:

- CogniPoint sensor uses imaging, PIR sensor, and onboard ARM processor, with various wireless communication options; power source can be AC, DC or PoE
- Capable of gathering granular occupant and activity information, with a coverage area of 500 ft²
- > Does not transmit images or video, only event data

> Strategy and markets:

- Recently raised \$5 million in equity investment from ABB Tech Ventures, EcoMachines Ventures, and Flex Lab IX
- Installed in 27 million CE devices to date; expanding building automation applications via an API (40 apps)

> Recommendation:

uxresearch

- Clients interested in indoor sensing are advised to monitor PointGrab; its technology delivers building occupant distribution and commercial space analysis to improve building management, performance, and operations
- Company is planning to being commercial sales in Q4 2016, but pricing is not yet disclosed

Lux Take: **Positive**

Summary information				
Founded in	2008			
Location	Israel			
Revenue	\$O			
Key partners and backers	ABB Tech Ventures, Flex (Flextronics)			
Key metrics				
Unit cost	ТВА			
Power requirement	0.1-1.0 W (standby/active)			

Yanzi Networks

IoT sensor network for commercial building facility management applications

> Technology and differentiators:

- Suite of sensors which gather data for informing building operations; use cases include climate monitoring, light surveillance, and space utilization analysis
- Core value proposition is one of reducing capex and maintenance costs, which are significant considerations in commercial buildings

> Strategy and markets:

- Received \$3 million in funding from government sponsored fund in Sweden, currently planning to raise additional funding from investors outside of Sweden
- Targeting existing commercial office buildings, working mostly through facility management companies

> Recommendation:

> Approach Yanzi with interest, the company is making progress in quantifying the value of advanced indoor sensing; the results of its pilots will be a strong indicator of the viability of its offering to the broader commercial buildings market

Lux Take: Wait and See

Summary information			
Founded in	2009		
Location	Sweden		
Revenue	\$100,000 (est.)		
Key partners and backers	Coor, IBM, Intel		
Key metrics			
Unit cost	\$30-50/sensor		
SaaS fee	\$0.06/sensor/year		

Image source: Intel